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Determination of Elastic and Piezoelectric Constants for Crystals
in Class (3m)

AW, Warner, M. Oxog,* anp G. A, CoQuin

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey 07971

Determination of the elastic and piczoclectric constants for crystals in class (3m) is complicated by the
large number of independent constants and the many possible ways in which they may be combined. An
experimental and analytical procedure has been developed to determine all the constants using primarily
thickness-mode measurements mace on small, plate-shaped samples of various crystallographic orientations,
and results using this procedure have heen obtained for lithium tantalate and lithium niobate, two recently
developed synthetic crystals. The resonant and antiresonant frequency constants for thickness modes have
heen calculated as functions of a plate’s rotation angle. Information in this form makes possible the selection
of plate ortentations that might be uscful as resonators and transducers.

INTRODUCTION

ECENTLY, synthetie ervstals in the class (3m)
have attracted much interest because of their
unusual combination of ferroelectric, optical, elastic,
and piezoelectric properties. The successtul application
of these materials in ultrasonic devices, whether as
resonators for electromechanical filter applications or
as transducers in devices such as ultrasonic delay lines,
depends upon a knowledge of the complete set of elastic,
piezoelectric, and dielectric constants. The primary
objectives of the present paper are: (1) to present a
combination of experimental and analytical techniques
that makes possible the determination of all the elastic
and piezoelectric constants, and (2) to show how the
constants may be used to calculate the fundamental
resonant and antiresonant frequencies of a thickness-
mode plate vibrator as a function of the plate orienta-
tion and from this information to predict plate orienta-
tions of maximum usefulness. The methods of this
paper are applied specifically to two materials of tech-
nological importance, lithium tantalate, LiTaO;, and
lithium niobate, LiNbO;.12
Most of the measurements involve thickness modes
in plates. The use of thickness modes has the advantage

*On leave of absence from Institute of Industrial Science
University of Tokyo, Azabu, Tokyo, Japan.

YA. A. Ballman, “Growth of Piezoelectric and Ferroelectiric
Materials by the Czochralski Technique,” J. Am. Ceramic Soc.
48 p. 112-113 (1965).

2 K. Nassau, H. J. Levinstein, and G. M. Lioacono, “Lithium
Niobate I & I1,” J. Phys. Chem. Solids 27, 983 and 989 (1966).

that relativelv small samples may be used and that the
fabrication requirements are reduced to those of
(latness, parallelism, and orientation of only the major
faces of a sample. In principle it is possible to determine
all the constants of materials in class (3m) by use of
thickness modes, as has been done in the case of quartz,
class (32), by Koga and Aruga.? However, the ferro-
electric materials eonsidered in this paper exhibited a
slight nonuniformity when the same measurement was
made on different samples of the same material. Since
the thickness mode frequencies are not very sensitive to
certain constants, in particular ey and ¢13%, it was
found necessary to make one additional measurement
on a longitudinal mode resonator? to aid in the deter-
mination of these constants.

The symbols used in this paper will be in accordance
with the IRE Standards on Piezoelectric Crystals,
1949 and 1958. The most frequently used symbols are
listed below :

¢ elastic constant (stiffness)
¢’ piezoelectrically stiffened elastic constant
¢ effective elastic constant (eigenvalue of Eq. 2)

#1. Koga and M. Aruga, “Theory of Plane Elastic Waves in a
Piezoelectric Crystalline Medium and Determination of Elastic
and Piezoelectric Constants of Quartz,” Phys. Rev. 109, 1467~
1473 (1958). Their form of piezoelectrically stiffened constants is
somewhat different from Eq. 3. In the case of quartz, neglecting
the difference between e and e, both formulas yield exactly the
same results.

1 W. P. Mason and H. Jaffe, “Methods for Measuring Piezo-
clectric, Elastic, and Dielectric Coefficients of Crystals and
Ceramics,” Proc. IRE 42, 921-930 (1954).
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Fic. 1. Frequency spectrum of a rotated plate of lithium
tantalate.

e piezoelectric stress constant

[ frequency

k electromechanical coupling factor
m order of overtone

n normal vector to a plate

¢ thickness of a plate

V phase velocity of elastic wave

B eigenvector associated with ¢,
e dielectric constant
p density

I. REVIEW OF THICKNESS MODES
OF VIBRATION

A thickness mode of vibration in a plate can be
interpreted as a standing wave formed by waves propa-
gating in a direction normal to the major surfaces. The
velocity V, of a plane wave in a plezoelectric medium
propagating in the direction n is given by the following
equation:

Va= <6a//P)%c a=1, 2: 3, (1)

where ¢, is an effective elastic constant, which is one of
three eigenvalues of the following secular determinant :*6

8, =0, (2)

leie' —

in which ¢, is a piezoelectrically stiffened elastic con-
stant and is given by

ci' =[einF 4 lepemmm)/ (eSumy) Inm,.  (3)

If an effective elastic constant depends on anv piezo-
electric constants, it is called piezoelectrically stitfened,
while, if it does not, it is called unstiffened.

Unit eigenvectors 8, associated with each eigen-
value ¢, give the directions of the displacement vectors
of the three waves.

5 A. W. Lawson, “The Vibration of Piezoelectric Plates,” Phys.
Rev. 62, 71-76 (1942).

8 H. F. Tiersten, ““I'hickness Vibrations of Piezoelectric Plates,”
J. Acoust. Soc. Am. 35, 53-58 (1963).
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The elastic wave motions existing in an electroded
plate of a piezoelectric material are driven by an electric
voltage applied to the electrodes. The determinantal
equation for the resonant frequencies in the most
general case, for a thickness-mode resonator excited
by electrodes on the major surfaces, has been obtained
by Tiersten® and is given as

81 @einy Vo cosyV o= (epii€ gttt o gitstty)
(ersttm ) siny V1] =0, (4)
in which

y=mfl. (3)

The insertion of a root back into one of the minor
determinants of Eq. 4 yields the amplitude ratios of
the waves contributing to the resonance. This deter-
minantal equation is very complicated in general. For
high overtones, however, Eq. 4 is closelv approxi-
mated by

cosyVet=0. (6)

This simplification results because v is very large and
appears only in the coefficient of the cosine term. Con-
sequently, the use of high overtones is much preferred
over the use of fundamental or low overtones for the
purpose of determining the constants. It should also be
noted that, while Eq. 6 is an approximation for the high
overtone resonant frequencies, it is exact for the anti-
resonant frequencies of the fundamental as well as
the overtone modes. On the other hand, the resonant
frequencies for the first few resonances are shifted to
lower values than those given by the above equation.®’
However, because in a high overtone the difference
between the resonant and the antiresonant frequency
is small, the measurement of resonance instead of the
more difficult measurement of antiresonance can safely
be used.

Only stiffened waves can be excited when the elec-
trodes are placed on the major surfaces. In this paper,
this type of excitation is called perpendicular-field ex-
citation. The unstiffened waves cannot be excited by
the use of perpendicular-field excitation. On the other
hand, some of them can be excited by a field parallel
to the major surfaces. Such a field can be provided by
placing the electrodes on the side (or minor) faces of
a plate. This is called parallel-field excitation.® For
this type of excitation, the resonant frequencies are
given exactly by Eq. 6. There is no frequency shift due
to piezoelectric boundary conditions on the major sur-
faces even in the low order resonances. However, the
effects of contour configuration on resonant frequencies
are still noticeable in low order resonances. Hence the
use of high order resonances is again preferable.

7M. Onoe, H. I'. Tiersten, and A. H. Meitzler, “Shift in the
Location of Resonant I'requencies caused by Large Electro-
mechanical Coupling in Thickness-mode Resonators,” J. Acoust.
Soc. Am. 35, 36-42 (1963).

8 A. W. Warner, “Use of Paralle] I'ield Excitation in the Design
of Quartz Crystal Units,” Proc. 17th Ireq. Control Symp.,
248-266 (1963).



DETERMINATION

Equations 1 and 6 yield
Ca=-1p(fu‘ 1/ m)?, (M

where f,,'®’ is the Irequency of the mth overtone. Thus,
in the most general case, three effective elastic constants
for any given orientation may be obtained experimen-
tallv, since there are in general three independent wave
motions with different phase velocities. The measure-
ment of a series of high order resonances is recommended
to ohtain a positive identification of any one mode
sequence by checking the harmonic relationship,
and improved accuracy can be obtained by averaging
of the data. The nature of these resonances and their
overtones is illustrated in Fig. 1, which is actually an
experimental plot of the resonances in a rotated I'-cut
plate of lithium tantalate. The three distinct series of
overtones are evident, along with resonances associated
with the edge dimensions. The highest overtone modes
are very close to the values of antiresonance. The reso-
nances at lower overtones may differ from this value
depending on the value of the electromechanical cou-
pling factor, on whether parallel- or perpendicular-field
excitation is used, and on the ratio of the diameter Lo
thickness dimensions of the plate. Although in principle
any kind of plate orientation can be used, oricntations
that vield unstifiened mades are preferable, since the
actual determination of the constants is simpler.

1I. THICKNESS MODES FOR CRYSTAL
PLATES IN CLASS (3m)

In the crvstal class (3m), there are six imlependent
elastic, four independent piezoelectric, and two inde-
pendent dielectric constants, as shown in the elasto-
piezo-diclectric matrix in Fig. 2. An examination of
the secular determinant in Eq. 2 for this case reveals
that several plate orientations vield at least one un-
stilfened mode.

A Z-cut, Fig. 3(a), vields two unstiliened pure shear
modes with the same frequency constants, and one
stiffened pure extensional mode. Any electric field direc-
tion parallel to the major surface can excite the un-
stiffened modes. An X-cut, Fig. 3(b), yvields one un-
stiffened pure extensional mode and two stiffened shear
modes. Any field direction parallel to the major surface
can excite the unstilicned mode.

A rotated Y-cut, Fig. 3(d), which includes a Y-cut,
Fig. 3(c), as a special case, vields one unstifiened pure
shear mode and two stiffened modes, which are mixtures
of shear and extensional motions. A feld along the
X axis excites the unstilfened mode and a field along
Z' axis excites the remaining two stifiencd modes.
Hence an electrode configuration that gives only the
field parallel to .X axes is preferred because the identi-
fication of modes hecomes simple. [f the identilication
is not a problem, then the parallel-ticld electrodes may
be rotated around the I” or thickness axis, so that all
three modes can be excited simultaneously with only
one clectrode configuration, as is the case in I'ig. 1.

OF CONSTANTS

FOR CRYSTALS

| it ar O3 es 0 0 0 —en en
i ey €y —enw O 0 0 €1 emn
| 11 €3 €u 0 0 0 0 [
e —eas O i 0 0 0 ei; 0
P00 0 0 i | e 0 0
} 0 0 0 0 ¢ Ces | —exn 0 0
_b— 0 0 0 e _8:3_ e 0 0
—én en 0 e O 0 0 e O |

en ew e 0 0 0 . 0 0 e

where (e1-—a12) =2ces. The superscripts, such as ¢# and
€5, are omitted.

Fic. 2. Llasto-piezo-diclectric matrix for the crystal class (3mr).

III. PROCEDURES FOR DETERMINING CONSTANTS

Dielectric constants can be obtained from capacitance
measurement of plates with full electrodes. At fre-
quencies well above any of the strong resonances, the
constant ey is oblained from a Z-cut and &5 from
either an \-cut or a I'-cut. At very low frequencies,
well below any strong resonances, the constants eg”
and €,7 arc obtained. Although the constants eg® and
e are the ones needed to obtain the piezoelectric
stress constants, the constants ex” and 37 can be de-
termined much more accurately from low-frequency
capacitance measurements. To circumvent this proh-
lem, the experimental values for e3S and en® were
used to obtain tentative values of the piezoelectric
constants, and later all constants were readjusted
slightly to fit the measured values of € and ey”.

Parallel-feld excitation of unstiffened modes, as
mentioned in the previous Section, immediately vields
the following constants: cy® from a Z-cut, en” from
an Y-cut, ¢g? from a I™-cut, and ¢i4¥ from a rotated
T-cut.

Since the stitfened mode in a Z-cut is a pure exten-
sional mode, the electromechanical coupling factor
k= (eas?/c3s’e33®)} can be obtained from the ratios of
measured fundamental and overtone resonant fre-
quencies.” This is the only fundamental thickness-mode
resonant frequency needed for the measurement of the
constants, so special selection of a large Z-cut plate
free from unwanted resonances is desirable. The con-
stants ¢33* and e;3 are obtained from 4, and the mea-
sured elfective elastic constant ¢; by the following
equations:

633E= (1—k¢2)t_'3, (8)
€33= [633353/342]%. (9)

The sign of es3 must be chosen so that the piezoelectric
strain constant ds; is positive, as specified by the IRE
standard on piezoeleciric crystals. This usually, al-
though not necessarily, implies that ey is positive.

The Journal of the Acoustical Society of America
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(a) Z-cut
cu—2e 0 0
(0] Cua—2C 0 =0
0 0 cast+Bases®—C
(b) X-cut
|cu—c 0 0
0 ceetBres—8 cu—Puesen |=0
0 Cla—PBneisern  Caat+PBners’—C
(¢) Y-cut
icgg—C 0 0

0 ciitHBnes?—¢e - (514_311815022) =0

| 0 — (c14—Buig1s€2) caatBues’—¢

(d) Rotated ¥-cut (around X-axis)
‘L 0 0

0 M- F |=0
‘0 F’ N'—¢
where

L =mes+n2cat2mnciy
M’ =m2ci1+ncas— 2mnci -8 (mners+miern+mnes)?
N =mPcas+n’css B (mPe15+ness)?
F’ =mn(cra+ca) —mPc1s+B (mners+mlesn+mnea) (mPers+n’ess)
B= (mtenn+n2e3) L
F16. 3. Secular determinants for plate orientations yielding
unstiffened modes (a) Z-cut, (b) X-cut, (¢) Y-cut, and (d)
rotated Y-cut (around X axis).

The perpendicular-field excitation of a I™-cut yields
two effective elastic constants, ¢ and ¢;.% Since they are
roots of the secular determinant shown in Fig. 3(c), the
following equations hold:

Zy=(G+G)y=cu®fHcaf+Bus (152 4-207), (10)
Iy = (G- Ca)y = cuifera® — (c1a®)HcuPBiders’
+644Eﬂ1136222‘|‘2614Eﬁ115615622. (11)

Similarly, the perpendicular-field excitation of an X-cut
also yields two effective elastic constants, and from
Fig. 3(b) they must satisfy the following:

Zx= (Ga+0Cs) x=casF+cosP+Bus (ersP+ex?), (12)
Mx= (Cs+ Cs) x = CaaPces” — (c145)*+cos"Br5e1s
+casFB115es’+2c14"B115e15600.  (13)

By a careful rearrangement of Eqgs. 10-13, we find that

cufrBuderss= My—1x)/ (Cy—2Zx), (14)
coe B et =2x— (lly—1lx)/(Zr—2x), (15)
cuf+Buder*=2y— (ly—1Mx)/Cy—Zx), (16)

9 This &; is, of course, different from the one obtained from a
Z-cut in the previous section. When it is necessary, the orientation
of a plate will be identified in the following manner: (¢;)y and
(e3) z, etc.
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(c1aB4B11e15€20) = Cr—Zx) (IIyZx—IIxZy)
—(My—Tx)*}/ Cy—Zx)% (17)

Thus, since all constants appearing in Eqs. 14-17 other
than e;5 and ez are known, we can determine the mag-
nitude of ¢;5 from Eq. 14, the magnitude of ey from
both Eqs. 15 and 16, and the relative sign between ¢35
and ez from Eq. 17. The absolute signs of ¢15 and ea»
are selected so that the piezoelectric strain constant
das s positive. That is,

das=e22(511F — 5105 ) —e155 147 >0,

(18)

according to the IRE convention. Notice that Eqgs. 14—
17 provide four equations to solve for only two un-
knowns, so that any inconsistencies in the measurements
are immediately apparent.

Perpendicular-field excitation of a rotated ¥V-cut
vields two effective elastic constants. From Fig. 3 their
sum is expressed by the following equation:

(G+G)y=M+N,

in which all constants except es; are known. Since Eq. 19
is a quadratic equation for e, selection of the proper
value for e3; can in principle be made by comparing the
values obtained from two different rotated ¥-cuts.

Unfortunately the values of e3; obtained from Eq. 19
are extremely sensitive to the measured values of ¢,
and @3, and small errors in these effective elastic con-
stants can lead to fairly large errors in e3;. Hence it is
desirable to measure some quantity that depends more
strongly on ez, and such a quantity is the coupling
factor kg, of a rectangular bar with its length along the
X axis and with electrodes applied to the Z faces. When
the length of the bar is much larger than the transverse
dimensions, the coupling factor kj; is approximately
given by

(19)

/331= (d312/633TS11E)%-

(20)

The sign of dy; can be determined by a static test, and
since 51, can be found from the fundamental resonant
frequency of the bar, d3; can be calculated from Eq. 20,
Then the equation

631=d31[611E+012E— 2(613E)2/633E]+613E€33/633E
/’ /A

PERPENDICULAR FIELD PARALLEL FIELD
(a) (b}

(21)

F16. 4. Electrode configurations tor (a) a perpendicular-field
excitation, and (b) a parallel-field excitation.
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provides a relation between the two remaining unknown
constants es; and cra®.

The magnitude of ¢13” can be found from the value
of 51,7 found from the bar measurement, with the sign
of ¢13* selected to give agreement with the effective
elastic constants measured on a rotated ¥-cut plate.
Alternatively, ¢13® can be selected to give the best fit
to measurements made on several different rotated
V'-cut plates and in this way obtain a check on the con-
sistency of the data.

1Iv. EXPERIMENTAL TECHNIQUES

The plates used in the experiments were irregular
in shape and averaged in area about 0.25 cm? The
small size 1s a consequence of using small, experimen-
tally grown boules of crystalline material, The ability
to use such plates is of course a distinct advantage in
the evaluation of new materials. Every effort was made
to produce flat, parallel plates so that the thickness di-
mension would have significance to at least three
figures. In practice, the thickness ranged from 0.200
to 1.000 mm with thickness variations in a given plate
less than 0.0005 mm (3 ). The thicker plates could be
operated on high overtones, while the thinner plates
gave better freedom from unwanted modes at the funda-
mental and low overtone modes.

The electrodes used were gold, deposited directly on
the crystal plates by evaporation in a vacuum of about
10~ torr. Figure 4 shows the electrode configuration for
perpendicular- and parallel-field excitation.

The perpendicular-field plates were clamped directly
in a Wayne-Kerr 1-100-MHz admittance bridge to
minimize lead inductance, while the parallel-field plates
were held in the bridge by miniature spring clips. In
some instances, where a desired resonance was ¢x-
tremely weak, additional sensilivity was obtained by
the use of a hyhrid transformer bridge such as is used
to evaluate unwanted resonances in quartz filter plates.
The admittance bridge is, of course, more desirable
because of its better definition of the series resonance.

The use of a sweep oscillator was found to be ex-
tremely useful in sorting out the many resonances in
any one plate, as well as in selecting a frequency free
from resonances for the measurement of capacitance.
An extreme example is shown in Tig. 1 where even and
odd overtones of the thickness extensional mode and
the odd overtones of both thickness shear modes can

PLATE UNDER TEST

!

SIGNAL O
Fic. 5. System for >—{ BRIDGE >
: GENERATOR DETECTOR
measuring resonant 2
frequencies. ] g mmm— - b
FOR SWEPT FREQUENCY OPERATION
ELECTRONIC
COUNTER

TarrLE 1. Constants of lithium tantalate.

Denaity p 7.45 X102 kg/mi
Dielectric
constants  euS, e 41 en? /e 51
e13%, e 43 €137 /eo 45
Elastic [ 2.33 X101 N/m? P 2.39 X101 N/m?
constants  c12E 0.47 c1aD 0.41
c13E 0.80 c13P .80
el —0.11 cuub —0.22
casf 2.75 ¢33 2.84
cuf 0.94 c4dD 1.13
casl 093 c4el 0.99
Piczoclectric  ers 2.6 Cm2 dia 2.6 X101t C/N
constants e 1.6 d»2 0.7
ea1 0.0 da —0.2
£33 1.9 di3 0.8
Aud 2.8 X10* m/F AuT 2.2 X104 m/F
BazS 2.6 BaT 2.5
su¥ 4.87 X102 m?/N  sui? 4.76 X107 m?2/N
s —0.58 sl —0.50
13k —1.25 5132 —~1.20
s1a¥ 0.64 sud 1.02
salf 4.36 s330 4.19
sl 10.8 sul 9.3
seol 10.9 Ses? 10.5
£15 5.8 X102 m2/C his 7.2X108 N/C
go2 1.5 no2 4.3
£31 —0.6 ha 0.0
£33 2.1 has 5.0

be identified. Tt can further be seen that some estimate
of coupling and () can be made as well as an identifica-
tion of the several series of resonances.

Figure 5 shows the schematic diagram of the system
for measuring the series resonant frequencies of a plate.
The sweep oscillator is continuously variable as to
sweep width, sweep rate, and center frequency. Crystal
controlled harmonic markers are provided every 1, 2, 3,
or 10 MHz. It is usually sufficient in the measurement
of any one resonance to set the sweep for a narrow
range of frequency, set sweep rate to manual, find the
peak or null depending on which bridge is in use, and
read the frequency on a frequency counter. If greater
precision is desirable, a frequency synthesizer may be
substituted for the sweep oscillator, and a tuned volt-
meter for the detector. The system covers from 50 KHz
to 100 MHz, and since the fundamental resonance of a
plate may be near 3 MHz, overtones as high as 30 can
be measured.

The accuracy of determining the frequency constant
from overtones is about 0.1, limited principally by
the thickness measurement. Since values from a
number of plates of lithium tantalate of the same
orientation show variations as high as 19, particularly
when different boules or crystals are involved, it is
believed that imperfections in domain structure® are
significant in this measurement.

® R, L. Barns, “X-ray Powder Data, Density and Precision

Lattice Parameters of Lithium Tantalate, LiTaOj” (to be
published).
The Journal of the Acoustical Society of America 1227
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TaerLe ML.EComparison between measured and calculated frequency constants of lithium tantalate (unit: hertz-meter).

Unstiffened Stiffened

Antiresonance Resonance Antiresonance Resonance

mes. cal, mes. cal. mes. cal. mes. cal. mes. cal.
X 2800 2798 2093 2078 1906 1906 1680 1670 .. 1665
Y 1760 1767 2854 2857 2801 2811 1911 1913 1822 1793
VA 1775 1776 3086 3092 3040 3049 .. .. ... .
Rotated ¥ 25° 1693 1686 3117 3106 2959 2979 1684 1700 1679
45° 1670 1664 3176 3158 3080 3047 1686 1710 .. 1709
120° 1868 1862 3043 3038 3043 3000 1663 1674 1663 1673
135° 1871 1873 2937 2971 2931 2018 1743 1721 1700
170° e 1802 2785 2775 2765 2768 1986 1977 1834 1830

V. DETERMINATION OF CONSTANTS
FOR LITHIUM TANTALATE

Single domain crystals of lithium 1antalate, LiTaOy,
are grown by the Czochralski technique.! X-, F'- and
Z-cuts as well as several rotated }'-cuts are fabricated
and the orientations are checked by x-ray methods.!

The procedures from the first three paragraphs in
Sec. TII are straightforward. The coupling factor %, of
the Z-cut plate is 19%,. In the procedure of the fourth
paragraph the following results were obtained for e
and e.. from Eqgs. 14-17:

"= 6.8(C/m??
6222= 31
6222= 2.1

eee=+44.1

The above results show a fair amount of inconsistency
and the values €;5=2.6 and es»=1.6 were selected as a
compromise fit. In the procedure of the sixth paragraph
of Sec. 111 the coupling factor %;; was found to be 89,
and the value d3=—0.2X107" C/N is obtained from
this. When the value of ¢13# found by the procedure of
the seventh paragraph is used, the value of 3, calculated

RESONANT FREQUENCY () AND ANTIRESONANT
FREQUENCY (4) ROTATED AROUND X AXIS
CENTER 1S Z-CUT

z cut
LITHIUM TANTALATE

Y CUT Y CUT

3400
b
f:zoc

eos} $8343z:zy.

% 3000} .
% 3000}~ —

s b e,

o
[N

Z 2800 st

7
€ 2600
x
& 2400

g lsm& s —
F h-v-r«rfff--‘" e

0 200 400 60.0 800 100.0 1200 1400 1600 180.0
DEGREES

F16. 6. Frequency constants of the fundamental resonances
and antiresonances of a LiTaO; plate rotated around the X axis
(rotated Y-cut).
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from Eq. 21 is 53 =0.0 to two significant figures. This
does not at all imply that es is exactly equal to zero.

The results are summarized in Table I. With these
constants, it is possible to calculate the frequency con-
stants of the fundamental resonances from Eq. 5 for
plates of any orientation. Table II shows the comparison
between measured and calculated frequency constants
for the fundamental antiresonance (high order reso-
nance) and resonance of various cuts. Good experi-
mental accuracy for the fundamental resonance should
not be expected because of the small size of the plates.
In some instances the fundamental resonance could not
be measurcd due to interference of other modes. The
agreement between measured and calculated frequency
constants seen in Table IT is reasonably good, with dis.
crepancies less than 19, in most cases. Figures 6-8
show the variation of frequency constants of the funda-
mental resonances and antiresonances of a lithium-tan-
talate plate, when it is excited by a perpendicular field,
as functions of rotation angle of a plate around the X,
¥, and Z axes, respectively. The separation between
the resonance and antiresonance of a stiffened mode is a
measure of the strength of 4 mode. The figures show no
such separation for an unstiffened mode, because it is
not excited by a perpendicular field.

RESONANT FREQUENCY (-) AND ANTIRESONANT
FREQUENCY (+4) ROTATED AROUND Y AXIS
CENTER 1S Z-CUT

X CUT ZCuT

3400
=
%3200

- L N 1
¥ 3000 w— —&“M‘N
3 l L ;
z 2800} % | ‘ e,
@ 2600
¥
s 2400 :
Z 2200 i
1" ]
szoooK
z

1800

L e .ﬁ_,/'ﬂ"““\__ .‘Kﬁ L T

X CuT

T T
LITHIUM TANTALATE

1600

I‘o [ i " e It I L i L
00 200 400 600 800 1000 1200 1400 1600 1800

OEGREES

FREQUE

Fr6. 7. Frequency constants of the fundamental resonances and
antiresonances of a LiTaO; plate rotated around the ¥ axis.
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RESONANT FREQUENCY (.) AND ANTIRESONANT
FREQUENCY (4) ROTATED AROUND Z AXIS
CENTER IS Y-CUT
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I'iG. 8. Frequency constants of the fundamental resonances and
antiresonances of a LiTaOjy plate rotated around the Z ais.

We can define an effective coupling factor for a mode
in terns of the separation between the fundamental
resonance and antiresonance as follows:

T fr T fr\ ¢
/\-,.n—li<§ E)/lan(z ;):I ,

where fr and fy are the resonant and antiresonant fre-
quencies, respectively. This definition is equivalent to
the usual definition of coupling factor when there is
only one stiffened mode.? The effective coupling factors
of the quasishear and quasiextensional modes of a
rotated F-cut plate are plotted in Fig. 9 as functions
of the angle of rotation. Also plotted in Iig. 9 is the
angle ¢ between the extensional wave displacement
vector and the plate normal. Since the displacement
of the unstilfened shear wave is always along the
X axis, ¢ is also the angle the stiffened shear wave dis-
placement makes with the plane of the plate.

For transducer applications it is advantageous to

(22)

Z-CcuTt
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F16. 9. Effective coupling factors and angle ¢ helween quasi-
extensional wave displacement and plate normal for rotated
Yecuts of Lita0,.

RESONANT FREQUENCY (-) AND ANTIRESONANT
FREQUENCY (41 ROTATED AROUND X AXIS
CENTER IS Z-CUT
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I1G. 10. Frequency constants of the fundamental resonances
and antiresonances of a LINDIO; plate rotated around the X axis
(rotated F-cut).

have a high effective coupling factor, but in addition
1t 15 often required that only one wave, extensional or
shear, be excited. Referring to Tig. 9, we can see that
for the 165° rotated I'-cut plate the eliective coupling
factor of the quasiextensional mode vanishes whereas
the eflective coupling factor of the quasishear mode
has a high value of 41%,. Also the angle ¢ is nearly zero
so that the mode of vibration is ncarly a pure mode.
Hence this cut would make an excellent shear wave
transducer. Similarly, the 47° cut has a quasiextensional
mode coupling of 299, and no coupling to the cuasishear
nmode. The angle  for this cut is 1.4° which, although
not as small as for the 163° cut, is small enough so that
this cut could be used as an extensional wave transducer
for most applications. The 1112 cut also has no coupling
to the quasishear mode, but = —2.6° for this cut, and
this is too large to permit use as a transducer because
an cexcessive amount of shear wave would he excited.
Of course the Z-cut, with a coupling factor of 199,

RESONANT FREQUENCY () AND ANTIRESONANT
FREQUENCY (4} ROTATED AROUND Y AXIS
CENTER 1S Z-CUT
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Fic. 11. Frequency constants of the fundamental resonances
and antiresonances ot a LiNhO; plate rotated around the ¥ axis.
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RESONANT FREQUENCY (.) AND ANTIRESONANT TasiE III. Constants of lithium niobate.
FREQUENCY (4) ROTATED AROUND Z AXIS
CENTER 1S Y-CUT
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Fig. 12. Frequency constants of the fundamental resonances suf 5.78 X102 m?/N  su? 5.20
and antiresonances of a LiNbOj plate rotated around the Z axis. sk ~1.01 5120 —044
Sizt —1.47 s1aD —145
SUE —1.02 subl 0.87
could also be used as an extensional wave transducer. ;“:: l?-gl “:ﬁ 1(4)4’;"
. “ K L .
All of the cuts mentioned above could be used for oo 13.6 Sas? 1.3
resonator applications, since in that case the purity of
esonator app ! L R o burity m 9.1X102m%’C M. 9.5 X103\, 'C
the mode of vibration is immaterial. Notice that in all P 28 b 64
cases the effective coupling factor goes to zero linearly g —0.4 ha 0.8
233 23 haa 5.1

with the angle of rotation rather than quadratically.
This implies that the mode whose effective coupling
goes to zero is excited with opposite phase in rotated
Y-cuts with angles on either side of the angle at which
the effective coupling is zero.

Another interesting point, which can be ohserved in
Figs. 7 or 8, is that one of the stiffened shear modes in
an X-cut plate is very weak. The other shear mode is
quite strong with an effective coupling factor of 419).
An Y-cut plate used as a transducer would excite one
shear wave in the delay medium very strongly and the
other shear wave would be weakly excited. Since the
two shear waves in an isotropic delay medium are
degenerate, this is not objectionable. Thus the X-cut
plate, because of its high effective coupling factor,
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w 8
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Fie. 13. Effective coupling factors and angle ¢ between quasi-
extensional wave displacement and plate normal for rotated
Y-cuts of LiNbQ;.
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might be the best choice for a shear wave transducer
on an isotropic delay medium.

VI. DETERMINATION OF CONSTANTS
FOR LITHIUM NIOBATE

In determining the constants of lithium niobate by
the procedure discussed in Section III, the coupling
factor k, of the Z-cut plate was found to be 17%,. No
inconsistencies were found when using the procedure
of the fourth paragraph, Sec. III, to find €15 and esn.
The coupling factor k3, in the procedure of the fifth
paragraph was found to be 2%,. The results are sum-
marized in Table I1I. Table IV shows the comparison
between measured and calculated frequency constants
for the fundamental antiresonance (high order reso-
nance) and resonance of various cuts. Figures 10 to 12
show the variation of frequency constants as functions
of rotation angle of a plate around the X, ¥, and
Z axes, respectively.

The effective coupling factors of the quasiextensional
and quasishear modes of a rotated Y-cut plate are
shown in Fig. 13 as is the angle ¢ between the quasi-
extensional wave displacement vector and the plate
normal. The 163° rotated ¥'-cut plate has zero coupling
to the quasiextensional mode. The angle ¢ for this cut
is only —1.6° so that it can be used as a shear wave
transducer, and the effective coupling factor of the
quasishear mode is 629, which is remarkably high for
a single-crystal, high Curie temperature material. Both
the 36° and 123° rotated cuts have zero coupling to the
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Th1sLe IV. Comparison between measured and calculated frequency constants of lithium niobate (unit: hertz-meter).

Unstitfened Stiffened

Antiresonance Resonance Antiresonance Resonance

mes. cal. mes. cal. mes. cal. mes. cal. mes. cal.
X 3290 3289 2405 2397 2049 2051 2032 2037 1838 1803
Y 1993 1993 3425 3430 3297 3306 2239 2231 1868 1845
VA 1788 1788 3660 3639 3615 3620 o 1788 .. 1788
Rotated I' 45° 2012 2015 3692 3661 3303 3342 2023 1994 2005 1976
60° 1942 1950 3664 3629 3415 3467 1933 1933 1900 1871
135° 1750 1763 3331 3542 3438 3436 2067 2041 2052 1999
160° - 1891 3306 . 3363 2276 2241 1896 1869

quasishear wave, but the angle ¢ in both cases is too
large for these cuts to be useful for transducers, and
only the Z-cut is suitable for an extensional wave
transducer.

Asin the case of lithium tantalate, one of the stitfened
shear modes in an X-cut plate is very weak. The other
shear mode in this case has an efiective coupling factor
of 689, thus the Y-cut would make an excellent shear
wave transducer on an isotropic delay medium. It can
be seen in Figs. 10 and 11 that the frequency constants
of the weak shear mode li¢ between the resonance and
antiresonance of the strong shear mode. This causes the
interesting phenomenon of the weak mode having an
antiresonance lower in frequency than its resonant fre-
quency, since it is obvious that a ¢rvstal cannot have
1wo resonances without an intermediate antiresonance.

VII. CONCLUSION

A method for determining all the ¢lastic and the
piezoelectric constants of a crysial in the class (3m) has
been discussed. By making use primarily of resonant
frequencies of high overtones in thin plates, this method
allows the use of rather small crystals.

The constants of lithium niohate and lithium tanta-

late have been determined. The variation of frequency
constants of the fundamental resonance as well as anti-
resonance have been calculated as functions of rotation
angle around the X, I, and Z axes, so that useful cuts
may be selected. Several cuts of both materials, and in
particular lithium niobate because of its very high
elfective coupling factors, appear to be useful for trans-
ducer applications.
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